Name:	KEY!

Hour: ____

Unit L: Similar Triangles

Geometry 2nd Semester

Sorry about the economy, but I was never very good at story problems.

Lesson 13-1: The SSS Similarity Theorem

Vocabulary

sss similarity Theorem: if 3 sides on a triangle are proportional to 3 sides on another triangle, then the triangles are similar

Practice

means: the 2 D's have the same angles & ratios of lengths are =

1. True or False. A triangle with sides 3, 4, and 6 is similar to a triangle with sides 8, 6, and 12.

$$\frac{3}{6} = 0.5$$
, $\frac{4}{8} = 0.5$, & $\frac{6}{12} = 0.5$

TRUE

2. Use the given triangles below with the indicated sides and angle measures.

a) The ratios of which sides are equal?

$$\frac{20}{28} = 1.4$$
, $\frac{30}{42} = 1.4$, $\frac{40}{56} = 1.4$ } so all 3

b) Are the triangles similar?

c) ΔBAC~<u>ΔΥΧΖ</u>

d) Give the measure of each angle of \triangle ABC.

Lesson 13-2: The AA & SAS Similarity Theorem

Vocabulary

AA Similarity Theorem: if two angles of one triangle are conquent to two angles of another, then the triangles are similar.

sas similarity Theorem: If, in two triangus, the ratios of two pairs of corresponding sides & the included angle are congnient, then the triangles are similar.

Practice

1. Are the two triangles above similar? If so, why?

Yes, by AA Similarity Theorem

2. What is the magnitude of the dilation?

$$\frac{22}{14} = 1.57$$
 or $\frac{14}{22} = .64$

3. What is the other angle measure not given?

4. A meter stick casts a shadow 70 cm long while a tree casts a shadow 3.4 m long. How tall is the tree?

$$\frac{1m}{.7m} > \frac{x}{3.4}$$

$$\frac{1}{3.4} \Rightarrow x = 4.86 \text{ m}$$

$$\frac{7x}{.7} = \frac{3.4}{.7}$$

5. Are the following triangles similar? If so, why?

since they are both isoscells triangles, we know the base angles are equal.

Then, by AA or SAS ~ Thm, the triangus are similar.

Lesson 13-3: The Side Splitting Theorem

Vocabulary

side splitting Theorem: If a line is parallel to a side

of a triangle & intersects the other 2 sides in

distinct points, it splits these sides into proportional

segments.

A

$$\frac{AP}{PB} = \frac{AQ}{QC}$$

Side Splitting Converse Theorem: <u>if a line intersects</u> OP &

(a) at points X & Y, so that $\frac{OX}{XP} = \frac{OY}{YQ}$, then XY//PQ

Practice

1. Suppose MN and ST are parallel and split the triangle into lengths as shown below (in inches).

a) Find RN.

$$\frac{RM}{MS} = \frac{RN}{NT}$$
, $\frac{140}{80} > \frac{RN}{120} \rightarrow \frac{80 \cdot RN}{80} = \frac{16,800}{80}$, so $\frac{RN}{210} = \frac{16,800}{80}$

b) Find ST.

$$\frac{RM}{RS} = \frac{MN}{ST} \rightarrow \frac{140}{220} \times \frac{108}{ST} \rightarrow \frac{140 \cdot ST}{140} = \frac{36,960}{140}$$

$$\boxed{ST = 264}$$

2. Is XV // YZ? Why or why not?

$$\frac{WX}{XY} = \frac{WV}{VZ}$$

$$\frac{8}{2} = \frac{12}{3}$$

$$4 = 4$$

Since the sides are proportional, by the Side Splitting Theorem XV//YZ.