Name:		

Hour: _____

Unit E: Polygons

Geometry 1st Semester

Lesson 6-3: Types of Quadrilaterals

Vocabulary

Name & Description	Picture
Square	
Rectangle	
Parallelogram	
·	
Rhombus	
Trapezoid	
Isosceles Trapezoid	
Kite	

Bases:	 	 	
Base Angles:			

<u>Example</u>

QUADRILATERAL HIERARCHY

Lesson 6-4: Properties of Kites

(Notice: all 7 types of quadrilaterals are either kites, trapezoids, or both!)

Vocabulary
Ends:
Example B
Kite Symmetry Theorem:
Symmetry Diagonal:
Kite Diagonal Theorem:
Example
Rhombus Diagonal Theorem:
Example 2

Practice

1. What other quadrilaterals are considered kites? These figures will also have the same qualities about them that a kite does. (Hint: think about the hierarchy!)

2. Given KITE below with ends K and T, EL = 10, $m \angle EKT = 43$ and $m \angle ITK = 24$.

3. Given RHOM at the right.

b.
$$m \angle RMH = \underline{\hspace{1cm}}$$

Lesson 6-5: Properties of Trapezoids

(Notice: all 7 types of quadrilaterals are either kites, trapezoids, or both!)

Vocal	bulary	1
-------	--------	---

Trapezoid Angle Theorem: _	
<u>Example</u>	→ B
Isosceles Trapezoid Symmet	ry Theorem:
Example 2	I
Isosceles Trapezoid Theorem	1:
<u>Example</u> የ	T P A
Rectangle Symmetry Theorer	m:
<u>Example</u>	

Practice

- 1. What other quadrilaterals are considered trapezoids? These figures will also have the same qualities about them that a trapezoid does. (Hint: think about the hierarchy!)
- 2. Given: ABCD is a trapezoid with AB // CD and AD has been extended to point E.

Prove: ∠1 and ∠D are supplementary.

Conclusions	Justifications
0.	
1. m∠1 + m∠2 = 180	
2.	Corresponding Angles
3. m∠1 + m∠D = 180	
4.	Definition of supplementary angles

3. In trapezoid HOME, HO // ME. If $m\angle O = 118$, find the measures of as many other angles as you can.

4. GHJK is an isosceles trapezoid with bases GH and JK, where HJ = 31.8 and $m\angle H$ = 19. Find as many other lengths and angle measures as possible.

Lesson 7-7 & 7-8: Properties of Parallelograms

(Notice: there are 3 other quadrilaterals under a parallelogram in the hierarchy!)

Vocabulary

Prop	erties of a Parallelogram Theorem: In any parallelogram,
	a)
	b)
	c)
Para	llel Lines Distance Theorem:
	Example
	lelogram Symmetry Theorem:
Suffic a)	cient Conditions for a Parallelogram Theorem: If, in a quadrilateral,
b)	
c)	
d)	
	then the quadrilateral is a parallelogram.

Practice

1. Given: ABCD is a parallelogram.

Prove: In any parallelogram, opposite angles are congruent.

Conclusions	Justifications
0.	
1. AD ≅ BC, AB ≅ DC	
2. BD ≅ BD	
3. ΔABD ≅ ΔCDB	
4. ∠DAB ≅ ∠BCD	

2. Given: ABCD is a parallelogram.

Prove: In any parallelogram, the diagonals intersect at their midpoints.

Conclusions	Justifications
0.	
1. ∠ADB ≅ ∠CBD	
2. ∠AED≅∠CEB	
3. AD ≅ BC	
4. ΔADE ≅ ΔCBE	
5. AE ≅ CE, DE ≅ BE	
6. E is the midpoint of AC and BD	

- 3. In parallelogram WXYZ, WQ = 4, XQ = 6, and YZ = 7.
 - a. Find QY.
 - b. Find WX.
 - c. Name both pairs of parallel sides.

4. Refer to the quadrilateral below. If $m\angle KEA = 40$ and $m\angle EAK = 35$, find the following angles.

c. ∠EWA

d. ∠EKA

5. Given the following information, is ABCD a parallelogram?

a.
$$m\angle BAD = 60$$
, $m\angle ADC = 60$

b.
$$AB = 11$$
, $BC = 15$, $CD = 11$, $AD = 15$

c. AB // CD, AD =
$$8$$
, BC = 8

Lesson 5-7: Sums of Angle Measures in Polygons

Vocabulary

Triangle Sum Theorem:		
Quadrilateral Sum Theorem:		
Polygon Sum Theorem:		

Practice

1. In ABC, the angles are in the ratio 1:2:3. Find $m\angle A$, $m\angle B$, and $m\angle C$.

2. How many degrees are in a 5 and 6 sided figure?

3. If the measure of the angles of a quadrilateral are in the ratio 2:3:4:6, what are the measures of the angles?

4. Give the sum of the measures of the angles of a convex octagon.

Lesson 6-7: Regular Polygons

Vocabulary

Regula	ar Poly	gon:
	Exam	ple Equilateral Square Pentagon Hexagon Octagon— Triangle
Equilat	eral:	
Equian	ıgular:	
_		gon Symmetry Theorem: every regular <i>n</i> -gon possesses, n is even):
	(if <i>i</i>	n is odd):
	2) <u>Exam</u>	ple 3
Pract	ice	5
1.	a.	Find the number of <i>n</i> -fold rotations of a regular heptagon ABCDEFG.
	b.	Draw all lines of symmetry on heptagon ABCDEFG.

b) regular decagon

Find the measure of an interior angle of a:
a) regular octagon b)

2.

Lesson 7-9: Exterior Angles

Vocabulary

Exterior Angle: _____

Example

Exterior Angle Theorem:

Practice

1. Give the measures of $\angle BAD$ if $\angle B = 49$ and $\angle C = 53$.

2. Find y if $\angle BAC = 21y - 33$. $\angle ACB = 9y + 9$ and $\angle CBD = 27y - 3$.

3. Find $m \angle 3$ and $m \angle 4$.

