Hour: _____

Unit D: Transformations

Geometry 1st Semester

Lesson 4-1: Reflecting Points

Vocabulary

Preimage:				
of the	has a unique	······································		
		·		
	of the	of the has a unique of the has a unique		

Practice

 $r_m(P) = Q$

Reflecting points over the *x* and *y*-axis:

- 1. Using your MIRA, reflect point P over the *x*-axis. Label the new point P'. Then, reflect point P over the *y*-axis. Label the new point P".
- 2. What are the coordinates of the new points?

What do you notice about the x and y values when you reflect them over a particular axis?

relatio	onsnip betw	een each lir	ie that you	arew and	ine a?		
						······································	

Lesson 4-2: Reflecting Figures

Vocabulary

Reflection Postulate: Under a reflection...

- A. ______ is preserved.
- B. ______ is preserved.
- C. ______ is preserved.
- D. ______ is preserved.
- e. is REVERSED.
- f. There is a ______ between points and their images.

Practice

1. Draw the reflection image A'B'C' of triangle ABC over line m.

2. Draw line x so that $r_x(ABC) = A'B'C'$.

Lesson 6-1: Reflection-Symmetric Figures

Vocabulary

Reflection-Symmetric Figure:
Flip-Flop Theorem:
F 1
, G
Segment Symmetry Theorem:
a)
b)
Angle Symmetry Theorem:
Side Switching Theorem:
Circle Symmetry Theorem:
<u>Example</u>
Symmetric Figures Theorem:

Practice

1. Draw all of the lines of symmetry for the letters below.

C

1

2. Draw all of the lines of symmetry for the figures below.

3. For the figure below, complete the following:

- a. Draw the line of symmetry.
- b. $\angle A = \angle$ _____
- c. $\angle D = \angle$
- d. BC = ____
- e. AC = ____

Lesson 4-4: Translations

Vocabulary

	•
	Alternative Notations for Compositions:
r _m (r _r	$r_n(\Delta ABC) = \underline{\qquad \qquad } OR \qquad r_m \cdot r_n(\Delta ABC) = \underline{\qquad }$
Translation	n/Slide:
	of Translations:
1.	Preserved:
2.	Direction is given by any ray from a preimage point through its image point.
3.	Magnitude:
Two Reflec	tions Theorem: If m//n, the translation r _m ·r _n has

Practice

1. In the figure below, m//n. Use the Two Reflection Theorem to draw r_n , $r_n(\Delta ABC)$ – so do NOT do each actual reflection, just draw the end result & explain why the new triangle is where it is.

Lesson 4-5: Rotations

Vocabulary

Rotation:	
Rotations Preserve:	
Clockwise vs. Counterclockwise:	
V A A	ry°rz <u>OR</u> ry(rz(△ABC):
·×	rz°ry OR rz(ry(•×):
Two Reflections Theorem for Rotations:	If m intersects n , the rotation $r_m \circ r_n$ has center
O, where m intersects n and the magnitude	ide of the rotation is

Practice

- 1. For the image below, reflect $r_m(r_n(ABCD))$.
 - a. Did the figure rotate clockwise or counterclockwise?
 - b. What is the magnitude of the rotation?

Lesson 4-6: Translations with Vectors

Vocabulary

Vector:		

Practice

- 1. Draw the vector \overrightarrow{AB} .
- 2. Draw the image of \triangle ABC under the translation with the given vector . (Hint: eyeball it!)

Vectors in the Coordinate Plane

For vector (a, b) shown above, a is the horizontal component and b is the vertical component.

Translations Using Vectors

Wh	en transia	ting a figu	ire on the co	ordinate plane	by a vector	(a, b),	
----	------------	-------------	---------------	----------------	-------------	---------	--

Practice

1. A line segment has endpoints A = (5, -2) and B = (3, 7). Find the points of the image under a translation by vector (-1, 4).

Transformation in a Plane	Determined By	Description in Terms of Reflections
Reflection		r _m
Rotation		r _{m °} r _n if m intersects n
Translation		r _m ∘r _n if m//n

Lesson 4-7: Isometries & Glide Reflections

Vocabulary

sometry:	
Concurrent:	
Glide Reflection: a combination of a _	over a line and
a	whose direction is parallel to the reflecting line.
Notation	

Practice

1. Given the figure below, let $G = T \circ r_m(ABCD)$, where m is a line and T is the translation given by vector . Draw G(ABCD).

Glide Reflection $G = \underline{\hspace{1cm}}$, where r_m is a reflection and T is a translation.

