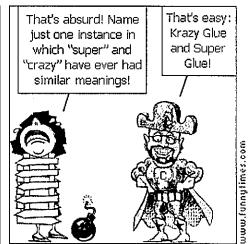
Name:	KEY!	

Hour: _____

Unit A: Logic

Geometry 1st Semester



Lesson 2-2: "If-Then" Statements

Proposition	Implication		
If	then		
Antecedent	Consequent		
Vocabulary			
Conditional: <u>A SENTENCE W</u>	/ an "if" clause & a "then"		
clause; aka "ifth	en" Statement		
Instance: <u>a SPCCIFIC (as</u>	se where the "if" part is		
TRUE, & the "then"	part is TRUE. (T,T)		
Counterexample: <u>0 SPCifi</u>	c case where the "if" part is		
TRUE, & the "then'	part is FALSE. (T,F)		
⇒: <u>"implits"; p⇒</u> q	means "p implies q"		
⇔: "if & only if"; p	=> q means "p if & only if q"		

Practice

a =It is a rabbit b =It has four legs c =It has floppy ears

Write the sentence symbolized by each statement.

- 1. $a \Rightarrow b$ If it is a rabbit,
 then it has 4 legs.
- 2. If b, then a.

 If it has 4 legs,
 then it is a rabbit.
- 3. cimplies a c⇒a

 If it has floppy ears,
 then it is a rabbit.

Write the proposition and implication of the conditional.

4. If a network has four nodes, then it has six arcs.

Proposition: If a network has 4 nodes

Implication: then it has le arcs

Rewrite the following statements as conditionals.

5. A person that is 14 years old is a teenager.

If a person is 14 yrs. old, then they are a teenager.

6. A Doberman is a dog.

If an ianimal is a Doberman, then it is a dog.

Given the conditional, "If $c \ge 3$, then c < 10."

7, T
7. Give an instance of the conditional.

$$C = 5$$

T.F.
8. Give a counterexample to the conditional.

Lesson 2-3: Converses & Biconditionals

Vocabulary

Converse: the converse of $p \Rightarrow q$ is $q \Rightarrow p$.

*just ble its opposite... doesn't tell us whether its T or F.

Biconditional (\Rightarrow) : "if & only if"; $p \Leftrightarrow q$ means "p if & only if q". Its the combination of 2 conditionals, $p \Rightarrow q$ & $q \Rightarrow p$.

Practice

1. If you are in Grand Rapids, then you are in Michigan.

Converse: If you are in MI, then you are in G.R.

2. If you have a Doberman, then you have a dog.

Converse: If you have a dog, then you have a Doberman.

3. If x > 1, then $x \ge -2$.

Converse: If $\chi \ge -2$, then $\chi > 1$.

4. If x = 2, then 3x + 1 = 7.

Converse: If 3x+1=7, then x=2.

- 5. If a person is driving 100mph on a U.S. highway, then the person is speeding.
 - a. Write the converse of the conditional.

 If a person is speeding, then they are driving 100 mph on a U.S. highway.

b. Is the original statement true? Is the converse true?

Original: true

converse: false, could be going 80 mph

- 6. Let p be the statement x < 5. Let q be the statement x < 4.
 - a. Write $p \rightarrow q$.

 If $\chi < 5$, then $\chi < 4$.
 - b. Is $p \rightarrow q$ true? Explain your answer. No, let $\chi = 4.5$
 - c. Write the converse of the statement $p \rightarrow q$.

If X < 4, then X < 5.

- d. Is the converse true?
- 7. Let p = "A country is democratic". Let q = "The power resides in the people".

write pag in words.
A country is democratic if & only if the power resides in the people.

- 8. Given the statement: "A right angle is an angle whose measure is 90."
 - a. Write a conditional (if-then statement) for this statement.

 If an angle is right, then its measure is 90.
 - b. Write the converse of your statement in part a.

 If an angle measures 90, then it is
 right.
 - c. Are both a and b true? If so, write the definition of a right angle as a biconditional.

Yes.

An angle is right if & only if its measure is 90.

Lesson 11-2: Negations

Vocabulary

Np→ng Inverse: If you don't live in CA, then you don't need a mountain bike.

ng -> np Contrapositive: If you don't need a mountain bike,
then you don't live in CA.

- 2. If you live in an air-conditioned home, then you have the opportunity to be cool in the summer.
- 9→P converse: If you have the opportunity to be cool in the summer, then you live in A.C. home.
- NP-7NQ Inverse: If you don't live in A.C. home, then you don't have the opportunity to be cool in the summer.
- ng=> ~p Contrapositive: If you don't have the opportunity to be cool in the summer, then you don't live in A.C. home.

3. Write your own "If...then" Statement:

If you own a Yaris, then it is a Toyota.

g->p Converse: If you own a Toyota, then it is a Yaris.

NP→NQ Inverse: If you don't own a Yaris, then it's not a Toyota.

ngt a Yaris.

- 4. Make a conclusion from these two statements.
 - (a) Riley cannot become an eagle scout.
 - (b) If a person is a boy scout, he can become an eagle scout.

Riley is not a boy scout.

Lesson 11-1: Logic of Making Conclusions

Vocabulary

Law of Detachment: given a statement $p \rightarrow q$ & statement p, you can conclude q.

Law of Transitivity: given a Statement $p \rightarrow q$ & $q \rightarrow r$,

YOU can conclude $p \rightarrow r$.

Law of Contrapositive: given a Statement $p \rightarrow q$ & Statement

Law	Symbols	Example
Law of Detachment	Given: (1) p = 9 (2) p Conclude: 9	(1) If $x = 10$, then $y = 6$. (2) $x = 10$. Conclude: $y = 0$
Law of Transitivity	Given: (1) p=q (2) q=r Condude: p=r	(1) If $x = 10$, then $y = 6$. (2) If $y = 6$, then $z = 21$. Conclude: $ f x = 10$, then $z = 21$.
Law of Contrapositive	Conclude: NP	 (1) If x = 10, then y = 6. (2) y = 3. Conclude:

*any other combinations, we can't make a conclusion, so write "not enough information"

Practice

1. A commercial states: If you want to be popular, you must dress well.

If you want to dress well, you wear Brand X jeans.

What conclusion(s) can you make (if any)?

If you want to be popular, you wear Brand X jeans.

- 2. (1) Every rhombus is a kite.
 - (2) The diagonals of a kite are perpendicular.
 - (3) MBUS is a rhombus.

What conclusion(s) can you make (if any)?

MBUS is a kite & the diagonals are I.

- 3. (1) Some bracelets are valuable jewelry.
 - (2) All bracelets are made of gold.

What conclusion(s) can you make (if any)?

Some gold bracelets are valuable.

- 4. (1) If you own a Doberman, then you own a dog.
 - (2) You own a dog.

What conclusion(s) can you make (if any)?

no conclusion

- 5. (1) My gardener is well worth listening to on military subjects.
 - (2) No one can remember the battle of Waterloo, unless he is very old.
 - (3) Nobody is really worth listening to on military subjects, unless he can remember the battle of Waterloo.

What conclusion(s) can you make (if any)?

My gardener is old.

- 6. (1) If a = 2, then b = 17.
 - (2) $b \neq 17$.

What conclusion(s) can you make (if any)?

 $a \neq 2$.

Lesson 11-4: Indirect Proofs

Vocabulary

Direct Reason		s with i	nformatio	n known
Direct Proofs:		U	en inform	nation is
Indirect Reas)	re the gi	ven Staten adiction	nent is

- 1. If you want to prove a statement to be false, start by reasoning from it.

 Example: Prosecutors thought the defendant was guilty, the lawyer reasoned from this.
- Using valid logic, try to make the reasoning lead to a contradiction or other false statements.
 Example: The lawyer argued that the defendant would have been in two places at once.
- 3. If the reasoning leads to a contradiction or other false statements, the assumed statement must be false.

 Example: The lawyer concluded that the defendant was not quilty.

contradictory: two statements are contradictory

if they both cannot be true at the same time.

Law of Indirect Reasoning: If a valid reasoning from a

Statement p Heads to a false conclusion, then

p is false.

Practice

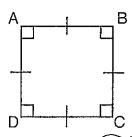
1. Let p be the statement " $_{\angle}V$ is acute." Let statement q be the statement " $_{\angle}V$ is right." Are p and q contradictory? Explain your answer.

Yes, acute is less than 90, right is equal to 90. An angle can't be both acute & right at the same time.

2. In the figure below, let p = ABCD is a rhombus. Let q = ABCD is a rectangle. Are p and q contradictory? Explain your answer.

No, p & q can both be true at the same time.

ABCD is both a rnombus & a square.



3. Show that 3(4+2x) = 6(x+1) is never true.

$$12 + lex = lex + le$$

$$-lex - lex$$

$$12 = 6$$

since 12=6 is a false conclusion, the original statement is false for all values of x.

4. Write an indirect proof argument to show that $\sqrt{22,200} \neq 149$.

Given: The real numbers $\sqrt{22,200}$ and 149.

Prove: $\sqrt{22,200} \neq 149$

1.
$$\sqrt{22,200} = 149$$

$$2. \qquad \left(\sqrt{22,200}\right)^2 = (149)^2$$

$$22,200 = 22,100$$

3. Since 22,200 ≠ 22,100 We KnoW √22,200 ≠ 149.