| Name: | | |-------|--| | | | Hour: _____ # Unit A: Logic # Geometry 1st Semester ## Lesson 2-2: "If-Then" Statements | Propositio | | | Implication | | |-----------------------|---|---------|---------------|----------| | | | - | | | | Anteceden | | | Consequent | | | Vocabulary | | | | | | Conditional: | | | | | | | | | | | | | | | | | | Counterexample: | | | | | | | , | | | <u> </u> | | ⇒: | | | | | | ⇔: | | | | | | Practice | | | | | | | a = It is a rabbit
b = It has four legant $c = $ It has floppy e | | | | | Write the sentence sy | mbolized by each st | atemeni | t. | | | 1. $a \Rightarrow b$ | | 2. | If b, then a. | | 3. c implies a # Write the proposition and implication of the conditional. | 4. | If a network has four nodes, then it has six arcs. | |-------|--| | | Proposition: | | | Implication: | | Rewri | ite the following statements as conditionals. | | 5. | A person that is 14 years old is a teenager. | | 6. | A Doberman is a dog. | | Given | the conditional, "If $c \ge 3$, then $c < 10$." | | 7. | Give an instance of the conditional. | | o | Cive a countereverable to the conditional | | 8. | Give a counterexample to the conditional. | #### Lesson 2-3: Converses & Biconditionals ### Vocabulary | | , | | | | |------|---|--|--|--| | Con | Converse: | | | | | | | | | | | Bico | nditional (⇔): | | | | | - | | | | | | Pra | ctice | | | | | 1. | If you are in Grand Rapids, then you are in Michigan. | | | | | | Converse: | | | | | 2. | If you have a Doberman, then you have a dog. | | | | | | Converse: | | | | | 3. | If $x > 1$, then $x \ge -2$. | | | | | | Converse: | | | | | 4. | If $x = 2$, then $3x + 1 = 7$. | | | | | | Converse: | | | | | 5. | If a person is driving 100mph on a U.S. highway, then the person is speeding. | | | | | | a. Write the converse of the conditional. | | | | | | b. Is the original statement true? Is the converse true? | | | | | 6. | Let p be the statement $x < 5$. Let q be the statement $x < 4$. | | | |----|---|---|--| | | a. | Write $p \rightarrow q$. | | | | b. | Is $p \rightarrow q$ true? Explain your answer. | | | | c. | Write the converse of the statement $p \rightarrow q$. | | | | d. | Is the converse true? | | | 7. | Let p = | = "A country is democratic". Let q = "The power resides in the people". | | | | Write _I | p⇔q in words. | | | 8. | Given | the statement: "A right angle is an angle whose measure is 90." | | | | a. | Write a conditional (if-then statement) for this statement. | | | | b. | Write the converse of your statement in part a. | | | | C. | Are both <i>a</i> and <i>b</i> true? If so, write the definition of a right angle as a biconditional. | | #### Lesson 11-2: Negations # Vocabulary Negation: Inverse: Contrapositive: **Practice** If you live in California, then you need a mountain bike. 1. Converse: Inverse: Contrapositive: If you live in an air-conditioned home, then you have the opportunity to be cool in 2. the summer. Converse: Inverse: Contrapositive: | Write your own "Ifthen" Statement: | |--| | | | Converse: | | Inverse: | | Contrapositive: | | Make a conclusion from these two statements. (a) Riley cannot become an eagle scout. (b) If a person is a boy scout, he can become an eagle scout. | # Lesson 11-1: Logic of Making Conclusions # Vocabulary | Law of Detachment: | | | | |------------------------|--|--|----| | | | | | | | | | | | Law of Transitivity: | | | ·- | | | | | | | | | | | | Law of Contrapositive: | | | | | | | | | | | | | | | Law | Symbols | Example | |--------------------------|---------|---| | Law of
Detachment | | (1) If x = 10, then y = 6. (2) x = 10. Conclude: | | Law of
Transitivity | | (1) If x = 10, then y = 6. (2) If y = 6, then z = 21. Conclude: | | Law of
Contrapositive | | (1) If x = 10, then y = 6.(2) y = 3.Conclude: | ## **Practice** | | commercial states: If you want to be popular, you must dress well. If you want to dress well, you wear Brand X jeans. hat conclusion(s) can you make (if any)? | |----|--| | (2 |) Every rhombus is a kite.) The diagonals of a kite are perpendicular.) MBUS is a rhombus. | | W | hat conclusion(s) can you make (if any)? | | • |) Some bracelets are valuable jewelry.) All bracelets are made of gold. | | W | hat conclusion(s) can you make (if any)? | | • |) If you own a Doberman, then you own a dog.
) You own a dog. | | W | hat conclusion(s) can you make (if any)? | | (2 | My gardener is well worth listening to on military subjects. No one can remember the battle of Waterloo, unless he is very old. Nobody is really worth listening to on military subjects, unless he can remember the battle of Waterloo. | | W | hat conclusion(s) can you make (if any)? | | • |) If a = 2, then b = 17.
) b ≠ 17. | | W | hat conclusion(s) can you make (if any)? | ## Lesson 11-4: Indirect Proofs # Vocabulary | Direct Reasoning: | | | | | |-------------------|---|--|--|--| | Direc | et Proofs: | | | | | Indire | ect Reasoning: | | | | | | If you want to prove a statement to be false, start by reasoning from it. Example: Prosecutors thought the defendant was guilty, the lawyer reasoned from this. | | | | | | Using valid logic, try to make the reasoning lead to a contradiction or other
false statements. Example: The lawyer argued that the defendant would have been in two
places at once. | | | | | | 3. If the reasoning leads to a contradiction or other false statements, the assumed statement must be false. Example: The lawyer concluded that the defendant was not guilty. | | | | | Cont | radictory: | | | | | Law (| of Indirect Reasoning: | | | | | Prac | etice | | | | | 1. | Let p be the statement " $_{\angle}$ V is acute." Let statement q be the statement " $_{\angle}$ V is right." Are p and q contradictory? Explain your answer. | | | | | | | | | | 2. In the figure below, let p = ABCD is a rhombus. Let q = ABCD is a rectangle. Are p and q contradictory? Explain your answer. 3. Show that 3(4 + 2x) = 6(x + 1) is never true. 4. Write an indirect proof argument to show that $\sqrt{22,200} \neq 149$. Given: The real numbers $\sqrt{22,200}$ and 149. Prove: $\sqrt{22,200} \neq 149$