| ivai | me:Date:Hour:                                                                                          |
|------|--------------------------------------------------------------------------------------------------------|
| • •  | Unit A Review                                                                                          |
| 1.   | Let $p =$ "Larry has pizza" and $q =$ "Larry carries in the groceries." Write $p \Leftrightarrow q$ in |
|      | Larry has pizza if & only if he carries in groceries                                                   |
| 2.   | Write this definition of a scalene triangle as two conditionals:                                       |
|      | A scalene triangle is a triangle with no sides of the same length.                                     |
|      | 1) If a \( \Delta \) is scalene, then no sides are the same length                                     |
|      | 2 If no sides are the same lingth, then a \( \Delta \) is scaler                                       |
| 3.   | Consider the statement, "All octagons are quadrilaterals."                                             |
|      | a. Rewrite as a <u>conditional</u> statement.                                                          |
|      | If its an octagon, then its a gradrilateral.                                                           |
|      | b. Write the proposition.                                                                              |
|      | If its an octagon                                                                                      |
|      | c. Write the implication.                                                                              |
|      | then its a quadrilateral                                                                               |
| 4.   | Consider the conditional, "If $x \le 30$ , then $x < 29$ ."                                            |
|      | a. Give an instance of the conditional.                                                                |
|      | example: $x = 15$                                                                                      |
|      | b. Give a counterexample of the conditional.                                                           |
|      | example: $x = 29.5$                                                                                    |
| 5.   | True False. If a statement is false, then the converse can be either true or false.                    |
| -    | Statements & their converses                                                                           |
|      | are not logically equivalent                                                                           |
|      |                                                                                                        |

| Name:      |       | Date:Hour:                                                                          |
|------------|-------|-------------------------------------------------------------------------------------|
| 6.         | Consi | der the statement, "A figure is a Polygon(if)t has many sides".                     |
|            | a.    | ifthen<br>Rewrite as a conditional statement.                                       |
|            |       | If it has many sides, then a figure is a polygon.                                   |
|            | b.    | Write the proposition.                                                              |
|            |       | If it has many sides                                                                |
|            | C.    | Write the implication.                                                              |
|            |       | then a figure is a polygon                                                          |
| 7.         | Consi | der the conditional, "If a figure is a Quadrilateral, then it has four sides," p->q |
|            | a.    | Write the converse of the conditional.                                              |
|            |       | If it has 4 sides, then its a quadrilateral.                                        |
|            | b.    | Is the converse true or false?                                                      |
|            |       | True                                                                                |
| 8.         | Given | p = It is 4 pm and $q = I$ take the dog for a walk, write the following:            |
| 79         | a.    | Conditional: If it is 4pm, then I walk the dog.                                     |
| -7 p       | b.    | Converse: If I walk the day, then its 4pm.                                          |
| , .<br>→~q | C.    | Inverse: If its not 4pm, then I do not walk the dog.                                |
| 3~P        |       | Contrapositive: If I do not walk the dog, then its not 4pm                          |
| 79         | e.    | Bi-conditional: It is 4pm if & only if I walk the dag.                              |
| U          | f.    | If the conditional is true, which other statement is also true? Explain.            |
|            |       | contrapositive, since they are ligically                                            |
|            |       | equivalent.                                                                         |

|      | mbers 9-12, use the Law of Detachment, Transitivity, and Contrapositive to                                        |
|------|-------------------------------------------------------------------------------------------------------------------|
| make | a conclusion. P                                                                                                   |
| 9.   | If early chem. lab, then M. drives to school.  (1) Marty-drives-to-school-whenever-he-has-an-early-Ghemistry_lab. |
| 0.   | (2), Marty has an early Chemistry lab every Wednesday.                                                            |
|      | Marty drives to school on Wednesdays.                                                                             |
|      | If early Chem. lab then M. drives to school.  (1) Marty drives to school whenever he has an early Chemistry lab.  |
| 10.  |                                                                                                                   |
|      | (2) Marty drives to school.                                                                                       |
|      | No conclusion.                                                                                                    |
|      |                                                                                                                   |
| 44   | (1) If ABCD is a square, then it is also a rectangle.                                                             |
| 11.  | (2) If ABCD is a square, then it is also a parallelogram.                                                         |
|      | R.                                                                                                                |
|      | IF ABCD is a square, then its also a parallelogram                                                                |
|      | P                                                                                                                 |
|      | If its a square, then its a kite.  (1) Every square is a kite.                                                    |
| 12.  |                                                                                                                   |
|      | (2) Quadrilateral MNOP is not a kite.                                                                             |
|      | Quadrilateral MNOP is not a square.                                                                               |
|      |                                                                                                                   |

\_Date: \_\_\_\_\_\_Hour: \_\_\_\_\_

- 13. Using the grid below, determine who participates in what sport. Ajay, Maxine, Kenny, Lindsey, and Susan each play a different sport. The sports are basketball, soccer, tennis, baseball, and swimming.
  - (1) Maxine does not play soccer.

Name: \_\_\_\_\_

- (2) Susan plays either tennis or she swims.
- (3) Ajay plays either basketball or tennis, or he swims.
- (4) Kenny does not play a sport with a ball.

|         | Basketball     | Soccer | Tennis | Baseball | Swimming |
|---------|----------------|--------|--------|----------|----------|
| Ajay    | $(\checkmark)$ | *      | Χ      | X        | X        |
| Maxine  | X              | X      | X      |          | X        |
| Kenny   | X              | X      | Χ      | X        | (4)      |
| Lindsey | X              | (J)    | X      | X        | X        |
| Susan   | X              | Х      |        | X        | 人        |

