Hour:

Chapter 5 Systems

I want to listen to you but I'm thinking about snacks.

your cards

Lesson 5-1 Part 1: Solving & Graphing Inequalities

Solving Inequalities

★ Inequalities can be solved just like <u>equations</u>.

* If you multiply or divide by a negative number, you MUST reverse the direction of the inequality symbol.

Graphing Inequalities

★ On a number line, use a <u>Closed Circle</u> if the inequality includes

"equal to" (ex: <u>≤</u> or <u>≥</u>). Use an <u>Open Circle O</u> if it does

not (ex: <u>></u> or <u><</u>).

* Shade in the direction of the <u>inequality</u> Symbol, as long as the variable is on the <u>left</u> side at the end!

Practice

1. Solve $2m + 5\pi > 113$, and graph the solution set on a number line. $-5\pi < -57$

26 27 28 29 30

2. Solve $-3(x+5) \le 201$, and check your answer!

$$-3x - 15 \le 201$$

$$\frac{3}{3} \leq \frac{2110}{3}$$
 If lip sign!

-73 -72 -71

3. A ticket agency has 275 tickets to a playoff game. Each caller receives 2 tickets. When there are 50 tickets or less remaining, the agency tries to obtain more tickets. How many <u>callers</u> can be served before more tickets are needed?

So, they can have 112 callers before needing to get more tickets.

Solve $3x - 4 \le 26$, and graph the solution set. 4. 14 +4

X 5 10

Lesson 5-1 Part 2: Compound Sentences

Vocabulary

Intersection: the set of items SHARED by two

sets at the same time

Example: The students who have Mrs. Merritt AND Mrs. Mossburger

either set OR both (ALL items)

Example: The students who have Mrs. Merritt OR Mrs. Mossburger

In a picture...

Practice

Sketch each on a number line.

1.
$$x > 5$$
 or $x \le 2$

2.
$$x \le 3 \text{ or } x < -1$$

3.
$$x \ge -3$$
 or $x < 4$

6.
$$x \ge 2$$
 and $x < -1$

Set Notation

7.
$$\{x: 2 < x \le 4\}$$

8.
$$\{m: -1 < m \le 2\} \cup \{m: m \ge 4\}$$

9.
$$\{p: -3 \le p < 3\} \cap \{m: m > 1\}$$

5. x\end{aligned}
5. \text{Vertical}

Get"y"

Get"y"

Ollore

Pirst! $\frac{3y}{-3} \ge \frac{12}{-3} - \frac{2x}{-3}$ Above start slope

A solid $\frac{rie2}{rvin 3}$

Lesson 5-7 Continued...: Writing Linear Inequalities

Ask yourself...

- 1) What is the y-intercept? b''
- 2) What is the slope? (rise/run) "m" -
- 3) Is the shaded area greater than or 'less than'? Shade below

Practice

Write the equation for the line from each graph provided.

1. Equation:

$$y = -\frac{2}{3} \times +4$$
belowd

Equation:

$$y \ge \frac{1}{5}x - 7$$
above solid

Lesson 5-2: Solving Systems by **GRAPHING**

Vocabulary

System of Linear Equations: 0 Set of 2 or more linear

equations w/ 2 or more variables.

Solution to a System: an ordered pair that makes

both equations true: (# #) < answer

Practice Slope 3

1. $\begin{cases} y = 3x - 5 \end{cases} \text{ Start}$ $\begin{cases} y = 1x - 3 \end{cases} \text{ Start}$

The two lines intersect at their answer,

(1,-2)

2. $\begin{cases} x = 3 \leftarrow \text{weird } 0, \text{ vertical} \\ y = -2x + 2 \\ \text{Slope} \\ -\frac{2}{1} \end{cases}$

3,-4

-*Remember, to put an equation in your calculator it MUST be solved for y.

STEPS:

- 1) Press Y = . Type the equations in under Y1 and Y2.
- 2) Press **GRAPH**. Make sure you can see both lines and the intersection point on your screen.

*If you can't, try ZOOM-STANDARD or ZOOM-FIT.

- 3) Press CALC (Located above the TRACE key)
- 4) Choose #5 INTERSECT
- 5) Press **ENTER** to confirm <u>each</u> line. Press **ENTER** one more time when your calculator says <u>Guess?</u>
- 6) Your solution will appear at the bottom of the screen!

Practice

1.
$$\begin{cases} y = 3x + 2 \checkmark \leftarrow \text{put in calc} \\ 2x - y = -3 \end{cases}$$

$$y = -3$$

$$-2x$$

$$-2x$$

$$-2x$$

$$y = -2x + 3$$

$$y = -2x + 3$$

Lesson 5-8: Graphing Systems of Linear Inequalities

Practice

Graph each system below. Then

- (a) Identify two points that ARE solutions to the system, and
- (b) (identify two points that ARE NOT solutions to the system.

- **b.** (-3,2) &

- b. (2,-1) & (0,1)

4. The Biltrite Furniture Company makes wooden desks and chairs. Each item is worked on by a carpenter and a finisher. On average, carpenters spend four hours working on each chair and eight hours on each desk. There are enough carpenters for up to 8000 worker-hours per week. The finishers spend two hours on each chair and one hour on each desk. There are enough finishers for up to 1300 worker-hours per week. Given these constraints, find the feasible combinations of desks and chairs that can be completed in a week.

Step 1: Define Variables

Step 3: Write Inequalities

Step 4: Graph the Inequalities

Lesson 5-3: Solving Systems by <u>SUBSTITUTION</u>

*To use this method, you must have ONE of the equations solved for ONE of the variables.

$$3x + y = 25$$

$$y = x - 3$$

$$3x + x - 3 = 25$$

$$4x - 3 = 25$$

$$+3 + 3$$

$$4x = 28$$

$$4x = 28$$

$$4x = 28$$

$$4x = 28$$

$$4x = 3$$

$$4x$$

2)
$$\begin{cases} y = 3x \\ y = x + 4 \end{cases}$$

$$3x = x + 4$$

$$-x - x$$

$$2x = 4$$

$$x = 2$$
Plug into one of starting equations!
$$y = 3x$$

$$x = 3 \cdot 2$$
Answer: (2, 6)

$$(-3x + 3y = -21)$$
Solve one equation for "y"
$$2x + y = -1$$

$$-2x$$

$$y = -1 - 2x$$

$$y = 8$$

$$2x + 5y = 8$$

$$2x + 40 = 8$$

$$-40 - 40$$

$$3x = -32$$

$$x = -16$$

$$2x + 5y = 8$$

$$2 - 10 + 5y = 8$$

$$2 - 10 + 5y = 8$$

Lesson 5-4: Solving Systems by ELIMINATION

*To use this method, you must have the variables lined up. One of the variables must have opposite coefficients, or the same coefficients.

Lesson: Systems w/ Word Problems

Practice

1) Bill and Emily are both ordering fast food for their families while on a road trip. Bill orders 2 burgers and 3 orders (a) french fries. The (tota) cost of his meal is \$8.50. Emily orders 4 burgers and 2 orders of french fries. The total cost of her meal is \$11.

What is the cost-of a burger and an order of fries? Bill: 2. (2B+3F=8.50) -> (1B+6F=17 Emily: 4B+2F= 11 So, F=\$1.50 & B=\$Z

2B + 3F = 9.502B+3-15D=850 2B+4.90=8.50 -4/50 -4.50

2) There are 13 animals in a barn, some chickens and some pigs. There are 40 legs in

all. How-many-of each animal are there?

2. $(C + P = 13) \rightarrow \mathbb{R}$ 2C + 4P = 40 -> - - - - - - - 40 So, 7 pigs & 6 chickuns

3) Two schools are planning senior trips to New York City. This year the senior class at Grant High School rented (and filled) 1 van and 6 buses (with) 372 students. The senior class at Jefferson High School rented and filled 4 vans and 12 buses with 780 students. How many students can each van and each bus hold?

GHS:4.(1V+6B=372) -> (4W+24B=1488 JHS: 4V+12B=780 -> W+12B=780

So, bus holds 59, van holds 18

So, 200 adults, 75 children

4) On a given day, 275 people attended the state fair. Adult tickets cost \$8 and child tickets cost \$5. On this particular day, the total ticket sales were \$1975. How many of each type of ticket were sold?

 $(A + C = 275) \rightarrow -8A + 5C = 1975$ $8A + 5C = 1975 \rightarrow -8A + 5C = 1975$

5) The difference of two numbers is 7. The first number (s) less than twice the second number. Find the two numbers.

Lesson: Special Types of Systems

Vocabulary

Name of System Type	Description	Picture
Consistent	has a solution	or A
Inconsistent	no solution	
Independent	two lines are Separate	1 same
Dependent	two lines lay on top of one another	

How Can We Tell?!?! Just by looking at an equation...

Practice

1.
$$\begin{cases} y = 3x - 1 \\ y = \frac{1}{2}(6x - 8) \end{cases}$$

$$3x-1 = \frac{1}{2}(6x-8)$$

$$3x-1 = 3x-4$$

$$\begin{cases} y = 2x - 4 \\ y = \frac{3}{4} \left(\frac{8}{3} x - \frac{16}{3} \right) \end{cases}$$

SUB!
$$\begin{cases} y = 2x - 4 \\ y = \frac{3}{4} \left(\frac{8}{3} x - \frac{16}{3} \right) \\ 2x - 4 = \frac{3}{4} \left(\frac{8}{3} x - \frac{16}{3} \right) \end{cases}$$

SUBI

3.
$$\begin{cases} y = 5x \\ 2y = 10x + 2 \end{cases} \rightarrow \begin{cases} y = 5x + 1 \\ 2y = 10x + 2 \end{cases}$$

$$2(5x+1) = 10x+2$$

$$10x + 2 = 10x + 2$$

2=2... U linfinite solutions

SUB 4.
$$\begin{cases} x = 3 - 2y \\ 3x + 6y = 6 \end{cases}$$

$$3(3-2y) + 6y = 6$$

9 = 6 ... " no solutions

SOLVING SYSTEMS - Helpful Hints

Use SUBSTITUTION when...

* one variable is already alone!

Use ELIMINATION when...

* variables are lined up

* must have same or opposite coefficients

USE GRAPHING when...

* asked to! w