Name:	KEY!	
		Hour:

Chapter 3 Linear Functions

If I have 10 chocolate cakes and someone asks me for one, how many chocolate cakes do I have left? That's right, 10.

Lesson 3-1: Linear Function Intro & Constant-Increase & Constant-Decrease Situations

Vocabulary
Linear Equation: a function that Shows a relationship
between two variables
Requirements: • Variables must be in <u>SCPAVA+C</u> terms
 Variables cannot be located in the <u>denominator</u>
Variables cannot have
Linear Equations: Important Information
• A solution to a linear equation is a pair of numbers written as a <u>coordinate</u> (X, Y
• There are <u>infinite</u> solutions to a linear equation
When solutions are graphed, the points form a
• Linear equations can always be written inSlope - intercept form
Slope-Intercept Form (remember this is just ONE way to write a linear equation, but there are other ways as well!)
y = mx + b Slope y-intercept
• Slope = a measure of a line'sStllpnlss

• y-intercept = the point where a line cross the $\frac{y-0.000}{0.000}$ on a graph

• two parts: initial value = $\frac{y - int(v) + v}{(b)}$ & rate of change = $\frac{slope}{(m)}$

• can be represented with a <u>linear function</u>

Constant-Increase or Constant-Decrease Situations

1. Identify the equations that are considered linear equations.

2. Find three solutions to the linear equation: y = 3x - 2.

3. Identify the slope & y-intercept of each linear equation.

A.
$$y = \frac{2}{3}x - 5$$

Slope = $\frac{2}{3}$
y-intercept = -5
B. $y = 2 - 4x$
Slope = -4 or $-4/1$

4. An empty crate weighs 3 kilograms. It is filled with oranges that each weigh 0.2kg.

A. Is this is a constant-increase or constant-decrease situation?

B. Identify the initial value and rate of change.

C. Write as a linear function.

$$\frac{y = M \times + b}{y = 0.2 \times + 3}$$
month Katie bough a 50 lb s

5. At the beginning of the month, Katie bough a 50 lb sack of wild bird feed. She puts 2/3 of a pound into the feeder each morning. Let y represent the amount of remaining feed after x days. Write a linear equation relating x and y.

Initial valve:
$$50 \leftarrow "b"$$

Rate of Chap: $-2/3 \leftarrow "m"$

$$\gamma = m \times + b$$

$$\boxed{\gamma = -2/3 \times + 50}$$

6. Al's temperature at 4:00pm was 99.5°. It rose at a steady rate of 0.3° per hour for 6 hours. Then it stayed constant for four hours. Then, it fell steadily by 0.4° per hour for four hours. Make a graph to represent the situation.

Lesson 3-2: The Graph of y = mx + b

Vocabulary

slope: a ratio of a line's vertical change to its horizontal change

Slope = $\frac{rise}{run}$

// Parallel Lines: <u>two lines that never touch or are</u> identical; have SAME Slope

Example:

L Perpendicular Lines: two lines that form a 90° angle; have opposite/reciprocal slopes

Example:

Graph the line y = 2x(3)1. Ly Gope 2/1

STEPS:

- 1. Get "y" alone first!
- 2. Start by plotting the y-intercept.
- 3. Convert the slope to a fraction.
- 4. Use the "rise" & the "run" to plot the next few points.
- 5. Connect the points w/ a straight line.
- Graph the line $y = (-\frac{1}{2})x + 3!$ 2.

3. Graph the line 2y = -3x + 8. *get "y" alone

$$\frac{2}{4} = \frac{-3}{2} \times + \frac{8}{2}$$

$$y = \frac{-3}{2} \times + \frac{4}{4}$$

$$y = \frac{-3}{2} \times + \frac{4}{4}$$

$$\sqrt{\frac{3}{2}} \times + \frac{4}{4}$$

$$\sqrt{\frac{3}} \times + \frac{4}{4$$

4. Graph the line y = 4.

×ı	Y	
-2	4	
0	4	
1	4	
2	4	

horizontal

5. Graph the equation x = -2.

Looking at the weird cases...

Example 4 shows a horizontal line.

- Any equation in the form $\frac{\sqrt{-++-}}{\sqrt{-++-}}$ will be a horizontal line.
- These lines have a slope of ZCYO

Example 5 shows a Vertical line.

- Any equation in the form X = H will be a vertical line.
- These lines have an <u>undefined</u> slope.

- 6. Graph both lines on the same graph.
 - y = -2x + 3
 - y = 2x 2

Slope - 3/1

What do you notice???

Same Slope

The lines are //

- 7. Consider the equation y = 3x 5, y in + 50
 - A. Write an equation for a line that is parallel to this line and crosses the y-axis at 4.

B. Write an equation for a line that is perpendicular to this line and crosses the y-axis at -2. OPP/YCC. Slope = $3 \rightarrow -\frac{1}{3}$

$$y = mx + b$$
 $y = -1/3 x + -2$

Lesson 3-3: Linear Combination Situations

Vocabulary

slope: Stelpness of a line

Slope = $\frac{rise}{run}$ OR $\frac{y_2 - y_1}{x_2 - x_1}$

Practice

- In pro hockey, a win is worth 2 points, a tie is worth 1 point, and a loss is worth 0 1. points. Early in the season a team had 11 points.
 - Α. Write an equation to express the relationship among the number of wins W, the number of ties T, and the number of losses L.

2W + 1T + X = 11 2W + 1T = 11Make a table and graph of all possible (W, T) that could occur.

В.

- A chemist mixes x ounces of a 20% acid solution with y ounces of a 30% 2. solution. The final mixture contains 9 ounces of acid.
 - A. Write an equation relation x, y, and the total number of ounces of acid.

 $0.2 \times + 0.3 = 9$

How many ounces of the 30% acid solution must be added to 2.7oz of the B. 20% solution to get 9oz of acid in the final mixture?

0.2(2.7) + 0.3y = 9 $\begin{array}{c} .54 + 0.3y = 9 \\ -.54 \\ \hline 0.3y = 8.40 \\ \hline 0.3 \\ \end{array}$ 3. Find the slope given two points (-2, 3) and (4, 15). \downarrow

$$\frac{Y_2 - Y_1}{X_2 - X_1} = \frac{15 - 3}{4 - -2} = \frac{12}{6} = \boxed{2}$$

Lesson: Intercepts

We already know how to find the <u>y-intercept</u> by looking at an equation in
Slope - intercept form. Now, we are going to learn how to find the
& intercepts from ANY form.
Vocabulary
Intercept: the specific point where a line
crosses the x or y axis.
*they are very useful in graphing, solving, and interpreting real-life situations!
x-intercept: Where a line crosses the x-axis;
the y-coordinate is always zero
Find it byplugging in for the for the
y-intercept: Where a line crosses the y-axis;
the x-coordinate is always zero
Find it byplugging in for theX-V0\VL

Find the x & y intercepts of each equation.

1.
$$y = 2x - 3$$

X-intercept
$$y$$
-intercept
 $y = 2x - 3$ $y = 2x - 3$
 $0 = 2x - 3$ $y = 2 \cdot 0 - 3$
 $13 + 3$ $1.5 = x$ 1

2.
$$2x + 4y = 32$$

x-intercept	٤	y-intercept
2x + 4y = 32	{	2x+4y=
2 × + 4.0 = 32		2.0 + 4y =
$\frac{2}{\lambda} = \frac{32}{2} $ $\frac{50}{100}$	}	47 =
X = 14 (14,0)	(7
<i>y</i> = -2	1	Y -

3. y = -2

line

Lesson 3-4: Graphing in Standard Form

Vocabulary

Remember, we already learned about slope-intercept form of a linear equation, but that is not the only form. We also have...

Standard Form: $A \times + B y = C$

- A, B, and C are all <u>intacrs</u> (no fractions or decimals!)

TYPES OF LINES

Oblique Line	Vertical Line	Horizontal Line		
				
Looks like	Looks like	Looks like		
y=mx+b or $Ax+By=C$	X=#	Y=#		
Slope = $-\frac{A}{B}$ or M	Slope = undefined	Slope = ZCYO		

1. Using the equation 0.2x + 0.3y = 9.

STEPS:

- 1. Find the intercepts.
- 2. Plot the intercepts & connect with a straight line!

x-intercept: O in for "Y"

$$0.2 \times + 0.3 \cdot 0 = 9$$

y-intercept: 0 in for "X"

$$0.2.0 + 0.3y = 9$$

$$0.3y = 9$$
 $0.8 = 0.3$ So, (0.30)

2. A. Graph the line x = 2.

B. Find the slope of the line.

$$\frac{\text{rise}}{\text{run}} = \frac{1}{0} = \text{error}$$

Lesson 3-5: Writing the Equation for a Line

Vocabulary

When possible, use SIOPE - Int. FORM ... ! You only need two pieces of information...

Practice

Equation: y = -3x + 21. slope = -3, y-intercept = 2

Equation: $y = \frac{1}{2} \times -5$ 2. slope = 1/2, y-intercept = -5

Equation: y = 0x - 3.5 or y = -3.53. slope = 0, y-intercept = -3.5

Equation: y = -4x + 0 or y = -4xslope = -4, y-intercept = 0 4.

BUT WAIT!!! What if you don't know the slope?!?! Then... find it

Practice

X, Y, X₂ Y₂ Contains points (-2, 3) & (6, -1); y-intercept = 2. 5.

$$\frac{\gamma_{2} - \gamma_{1}}{\chi_{2} - \chi_{1}} = \frac{-1 - 3}{1 - 3} = \frac{-4}{3}$$

Equation: $\sqrt{=-4/3} \times +2$

6.

Contains points (7, 3); y-intercept = 5.

$$\frac{5-3}{0-7} = \frac{2}{1}$$
Point (0,5)
$$x_2 y_2$$
Equation: $y = -\frac{2}{7} \times +5$

Contains points (-2, 4) & (0, 12). y-int=12 $x_1 y_1$ $x_2 y_2$ Equation: y=4 x+12

$$\frac{12-4}{0-2} = \frac{8}{2} = 4$$

BUT WAIT!!! What if you don't know the y-intercept?!?! That's a little different...

When you don't know the y-intercept, you can use a new form called

We can work from point-slope form to find ____Slope -int. form !

Practice

8. Find the equation of a line with slope = 3, passing through point (-2, 10).

$$y-y_1 = m(x-x_1)$$

 $y-10 = 3(x+2)$
 $y-10 = 3x+10$
 $y=3x+10 \neq slope-int. form U$

9. Find the equation of a line through point (3, 5) and (6, -1).

① Find Slope, since its not given
$$\frac{12-7}{2} = \frac{1-5}{1-3} = \frac{-1}{3} = \frac{-1}{2}$$

$$y - y_1 = m(x - x_1)$$

$$y - 5 = -2(x - 3)$$

$$y - 5 = -2x + 10$$

$$y = -2x + 11 = 0$$

Lesson 3-6: Linear Regression

Vocabulary

discrete data points

path of data approximately.

*useful for making predictions with data

Correlation: a measure of the relationship
between the variables
Positive Correlation means that as one quantity, the
other <u>incred ses</u> as well.
Negative Correlation means that as one quantity, the
other <u>dl Crasts</u> .
***NOTE: Correlation does NOT imply (all Sufformed)!!! Just because two variables are correlated, does NOT mean that one is causing the other!
Correlation Coefficient (r): gives a numerical valve for
correlation (litter "r" on your calculator)
If r is positive, the correlation is $_{-}$ $_{-}$ $_{-}$ $_{-}$ the slope of the line is $_{-}$ $_{-}$.
If r is negative, the correlation is & the slope of the line is
The absolute value of r indicates the $\underline{Stwnoth}$ of the correlation or linear relationship. The closer the magnitude of r is to 1, the stronger the linear relationship.
-1 negative correlation positive correlation 1
strong no correlation strong correlation
Practice
1. Identify the type of correlation for each data set. Give an approximate value for r .
A. $\frac{y}{\cdot}$ Strong B. $\frac{y}{\cdot}$ Weak positive $(r \approx 0.6)$ $(r \approx 0.6)$

2. Find the line of best-fit that represents the data below. Interpret the slope in context.

# of Absences	0	1	2	3	4	5	6	7	8
Avg. Grade	92	90	83	76	72	68	60	54	50

- 1 Stat -> Edit... -> L1 & L2 (enter data)
- ② Stat → Calc → LinReg(ax+b) → Enter y=-5.5 b=93.7

$$y = -5.5 \times + 93.7$$

For each absence, a students

r = -.99 < strong regative correlation

grade drops 5.5 points.

3. Find the line of best-fit that represents the data below. Interpret the slope in context.

# of siblings	0	1	2	3	4
Avg. Grade	78	84	86	76	80

r=-. 152 < weak neg. correlation

$$Y = -0.4 \times + 81.6$$

For each sibling, a students grack drops 0.4 points